Be it data science or machine learning. People start asking: Has ML run its course?
All the people write about web3 & NFTs now. But this is just the field maturing.
Here's how we do the real exciting work in DS, ML & AI now!
π Innovations speed of ML
It may seem like the innovation speed of ML is slowing down. But is it really?
In 2014 we got Generative Adversarial Networks. In 2017 we got Transformers. In 2020... anyways ignore that.
These technologies are maturing with GPT-3 and CLIP!
π Operations of ML
We are slowly figuring out how to build maintainable end-to-end pipelines.
- Data Engineering
- Data Validation & Schemas
- Automated training
- Concept drift
MLOps is very new and hard but exciting
i.e. at ECMWF we need to make ML work with Fortran!
π₯ But the failures of data science!
We hear about business failures and companies scrapping data teams.
But for every story of failure, I see 3 successes. Data-first companies make ML/DS work
ML/DS truly drives business value.
My chat w/ Candost Dagdeviren:
I had an inspiring conversation with @candosten about data science and machine learning.
β Jesper Dr.amsch @[email protected] (@JesperDramsch) November 23, 2021
π data science in businesses
π ML in the data science workflow
π why people switch to data science
π how to switch careers
π the creator economy (a bit)
Click through here: https://t.co/f1wRbEuSNt
β Tools are consolidating
Every day, I see a new awesome library that makes ML and DS easier.
Just follow Philip Vollet or subscribe to my newsletter.
- Pandas profiler automates EDA
- Pandera validates data frames
- Keras/Lightning make deep learning easy
π The AI hype is over
Tesla & self-driving is well into the "valley of despair" of Gartner.
Deep learning is over the hype peak.
The hype is over but now we can work with realistic expectations and build useful real-world machine learning and data science applications
While advances in machine learning, computer vision, chatbots and edge artificial intelligence (AI) drive adoption, it's these 4 trends that dominate this yearβs Hype Cycle π https://t.co/jsx1a5XBvD #GartnerSYM pic.twitter.com/nm0XPE6Q5c
β Gartner (@Gartner_inc) October 31, 2021
Conclusion
- Innovation speed of AI is still going
- MLOps is becoming more important
- Data-first companies succeed at ML & DS
- Awesome tools make life easier
- The AI hype is slowly dying down
but it doesn't feel like an AI winter.
ML is applied successfully everywhere. Just maybe not everywhere locally.